Существуют ли параллельные вселенные? Десять фактов за. Наш мир не единственный: теория параллельных вселенных Разные вселенные

Как часто вы задумываетесь о том, как бы был устроен наш мир сегодня, если бы результат каких-то ключевых исторических событий был другим? Какой была бы наша планета, если бы динозавры, например, не вымерли? Каждое наше действие, решение автоматически становится частью прошлого. По сути дела, настоящего нет: все, что мы делаем в данную минуту, уже не изменить, оно записано в памяти Вселенной. Однако существует теория, согласно которой существует множество вселенных, где мы живем абсолютно другой жизнью: каждое наше действие связано с определенным выбором и, делая этот выбор на нашей Вселенной, в параллельной – «другой я» принимает противоположное решение. Насколько оправдана такая теория с научной точки зрения? Почему ученые прибегли к ней? Попробуем разобраться в нашей статье.

Многомировая концепция Вселенной

Впервые теорию о вероятном множестве миров упомянул американский физик Хью Эверетт. Он предложил свою разгадку одной из главных квантовых загадок физики. Перед тем как перейти непосредственно к теории Хью Эверетта, необходимо разобраться, что это за тайна квантовых частиц, которая не дает покоя физикам всего мира уже не один десяток лет.

Представим себе обычный электрон. Оказывается, в качестве квантового объекта он может находиться в двух местах одновременно. Это его свойство называют суперпозицией двух состояний. Но магия на этом не заканчивается. Как только мы захотим как-то конкретизировать местоположение электрона, например, попытаемся его сбить другим электроном, то из квантового он станет обычным. Как такое возможно: электрон был и в пункте А, и в пункте Б и вдруг в определенный момент перепрыгнул в Б?

Хью Эверетт предложил свою интерпретацию этой квантовой загадки. Согласно его многомировой теории, электрон так и продолжает существовать в двух состояниях одновременно. Все дело в самом наблюдателе: теперь он превращается в квантовый объект и разделяется на два состояния. В одном из них он видит электрон в пункте А, в другом – в Б. Существуют две параллельные реальности, и в какой из них окажется наблюдатель – неизвестно. Деление на реальности не ограничено числом два: их ветвление зависит лишь от вариации событий. Однако все эти реальности существуют независимо друг от друга. Мы, как наблюдатели, попадаем в одну, выйти из которой, как и переместиться в параллельную, невозможно.

Octavio Fossatti / Unsplash.com

С точки зрения этой концепции легко объясняется и эксперимент с самым научным котом в истории физики – котом Шредингера. Согласно многомировой интерпретации квантовой механики, несчастный кот в стальной камере одновременно и жив, и мертв. Когда мы раскрываем эту камеру, то как бы сливаемся с котом и образуем два состояния – живое и мертвое, которые не пересекаются. Образуются две разные вселенные: в одной наблюдатель с мертвым котом, в другой – с живым.

Стоит сразу отметить, что многомировая концепция не предполагает наличия множества вселенных: она одна, просто многослойная, и каждый объект в ней может находиться в разных состояниях. Такую концепцию нельзя считать экспериментально подтвержденной теорией. Пока что это всего лишь математическое описание квантовой загадки.

Теорию Хью Эверетта поддерживают физик, профессор австралийского университета Гриффита Говард Уайзман, доктор Майкл Холл из Центра квантовой динамики университета Гриффита и доктор Дирк-Андре Деккерт из Университета Калифорнии. По их мнению, параллельные миры действительно есть и наделены разными характеристиками. Любые квантовые загадки и закономерности – это последствие «отталкивания» друг от друга миров-соседей. Возникают эти квантовые явления для того, чтобы каждый мир был не похож на другой.

Концепция параллельных вселенных и теория струн

Из школьных уроков мы хорошо помним, что в физике есть две главные теории: общая теория относительности и квантовая теория поля. Первая объясняет физические процессы в макромире, вторая – в микро. Если обе эти теории использовать на одном масштабе, они будут противоречить друг другу. Кажется логичным, что должна существовать некая общая теория, применимая к любым расстояниям и масштабам. В качестве таковой физики выдвинули теорию струн.

Дело в том, что на очень мелких масштабах возникают некие колебания, которые похожи на колебания от обычной струны. Эти струны заряжены энергией. «Струны» – это не струны в прямом смысле. Это абстракция, которая объясняет взаимодействие частиц, физические постоянные величины, их характеристики. В 1970-х годах, когда теория зародилась, ученые считали, что она станет универсальной для описания всего нашего мира. Однако оказалось, что эта теория работает только в 10-мерном пространстве (а мы живем в четырехмерном). Остальные шесть измерений пространства просто сворачиваются. Но, как оказалось, сворачиваются не простым способом.

В 2003 году ученые выяснили, что сворачиваться они могут огромным количеством методов, и в каждом новом способе получается своя вселенная с разными физическими константами.

Jason Blackeye / Unsplash.com

Как и в случае с многомировой концепцией, теорию струн достаточно трудно доказать экспериментально. Кроме того, математический аппарат теории настолько труден, что для каждой новой идеи математическое объяснение нужно искать буквально с нуля.

Гипотеза математической вселенной

Космолог, профессор Массачусетского технологического института Макс Тегмарк в 1998 году выдвинул свою «теорию всего» и назвал ее гипотезой математической вселенной. Он по-своему решил проблему существования большого количества физических законов. По его мнению, каждому набору этих законов, которые непротиворечивы с точки зрения математики, соответствует независимая вселенная. Универсальность теории в том, что с ее помощью можно объяснить все разнообразие физических законов и значения физических постоянных.

Тегмарк предложил все миры по его концепции разделить на четыре группы. К первой относятся миры, находящиеся за пределами нашего космического горизонта, так называемые внеметагалактические объекты. Во вторую группу входят миры с другими физическими константами, отличными от постоянных нашей Вселенной. В третью – миры, которые появляются в результате интерпретации законов квантовой механики. Четвертая группа – это некая совокупность всех вселенных, в которых проявляются те или иные математические структуры.

Как отмечает исследователь, наша Вселенная не единственная, так как пространство безгранично. Наш мир, где мы живем, ограничен пространством, свет из которого дошел до нас за 13,8 миллиарда лет после Большого взрыва. Узнать о других вселенных достоверно мы сможем еще минимум через миллиард лет, пока свет от них достигнет нас.

Стивен Хокинг: черные дыры – путь в другую вселенную

Стивен Хокинг также является сторонником теории множества вселенных. Один из самых известных ученых современности в 1988 году впервые представил свое эссе «Черные дыры и молодые вселенные». Исследователь предполагает, что черные дыры – это дорога к альтернативным мирам.

Благодаря Стивену Хокингу мы знаем, что черным дырам свойственно утрачивать энергию и испаряться, выпуская при этом излучение Хокинга, получившее имя самого исследователя. До того, как великий ученый сделал это открытие, научное сообщество полагало, что все, что каким-либо образом попадает в черную дыру, исчезает. Теория Хокинга опровергает это предположение. По мнению физика, гипотетически любая вещь, предмет, объект, попавший в черную дыру, вылетает из нее и попадает в иную вселенную. Однако такое путешествие является движением в один конец: обратно вернуться никак нельзя.

Некоторые люди отвергают «метафизические» понятия (обидное слово с точки зрения физика!). Среди них и понятие «мультивселенной» — гипотетического множества всех возможных реально существующих параллельных вселенных (включая ту, в которой мы находимся). Всемирно признанный британский космолог и астрофизик считает, что мультивселенная полностью находится в компетенции науки, хотя пока что является лишь гипотезой.


Есть точка зрения, которую — хотя она и является гипотетической — я нахожу весьма привлекательной. Это идея о том, что наш Большой взрыв не был единственным. Отдельные вселенные могли остывать по-разному, и, в конце концов, ими управляют разные законы, и определяются они разными числами. Эта гипотеза не выглядит «экономной», — в самом деле, возможно, ничто не кажется более экстравагантным,чем обращение ко множеству вселенных, — но естественным образом проистекает из некоторых (пусть даже и умозрительных) теорий и открывает новое видение нашей Вселенной как всего лишь одного «атома» бесконечной мультивселенной.

Андрей Линде и другие ученые уже доказали, что некоторые предположения, согласующиеся со всем, что мы знаем, говорят о существовании множества вселенных, которые появились после отдельных «больших взрывов» и стали несвязанными участками пространства-времени. Эти вселенные мы никогда не сможем наблюдать напрямую, мы даже не можем достоверно сказать, существуют ли они «до», «после» или «одновременно» с нашей Вселенной.

Первоначальные предположения, которые предсказывают многочисленные вселенные, все еще являются умозрительными, но, если их удастся укрепить и связать с теорией, которая убедительно объясняет то, что можем наблюдать, тогда нам придется принимать другие (ненаблюдаемые) вселенные всерьез, так же как мы доверяем тому, что наши сегодняшние теории говорят о кварках внутри атомов или о том, что скрыто внутри черных дыр.

Если и в самом деле существует множество вселенных, возникает следующий вопрос: насколько они разнообразны.

Ответ зависит от характеристик физических законов на более глубинном и более обобщенном уровне, чем тот, который мы сейчас понимаем. Возможно, какая-то «окончательная теория» даст обобщенную формулу всех наших шести чисел. Если это произойдет, то другие вселенные, даже если они и существуют, являются, в сущности, повторениями нашей, а очевидная «настройка» будет являться тайной не более, чем таинственна наша Вселенная. Мы все еще затрудняемся сказать, каким образом набор чисел, созданный в экстремальных условиях Большого взрыва, попал в узкий промежуток, который допускает такие интересные последствия 10 млрд лет спустя.

Но есть и иная возможность. Всеобъемлющие законы, распространенные в мультивселенной, могут оказаться более мягкими. Мощность сил и масса элементарных частиц могут не быть повсюду одними и теми же, а принимать различные значения в каждой вселенной. Тогда то, что мы называем «законами физики», с точки зрения мультивселенной будет всего лишь регламентом, применимым внутри только нашей собственной Вселенной, и результатом ее ранней истории.

Звезды и планеты все еще могли бы существовать, но они были бы меньше и развивались быстрее. Они не дали бы достаточно длинных промежутков времени, которые требуются для эволюции. И притяжение раздавило бы все достаточно большое, чтобы развиться в сложный организм.

«Рецепт» любой «интересной» вселенной должен включать по крайней мере одно очень большое число: понятно, что не так уж много событий может случиться во вселенной, которая так ограничена, что вмещает всего несколько частиц.

Каждый сложный объект должен состоять из большого количества атомов. Чтобы развиваться по пути усложнения, требуется много времени — во много, много раз больше, чем нужно для одного атомного события.

Некоторые теоретики отдают предпочтение самой простой вселенной с достаточным количеством межгалактической темной материи (что противоречит лучшим сегодняшним доказательствам).

Если на самом деле существует множество вселенных, описываемых различными «космическими числами», тогда мы обнаружим себя в одной маленькой и нетипичной подгруппе.

Кажущиеся «спроектированными» особенности нашей Вселенной не должны удивлять нас больше, чем мы удивляемся тому, что вообще в ней находимся.

Мы обитаем на планете с атмосферой, обращающейся на определенном расстоянии от своей звезды-прародительницы, хотя на самом деле это очень «особенное» и нетипичное место. Случайно выбранное место в космосе окажется очень далеко от любой звезды; более того, скорее всего, оно будет находиться где-то в межгалактической пустоте, в миллионах св. лет от ближайшей галактики.

Если никакая другая вселенная математически не согласуется с законами физики, нам придется принять то, что «настройка» есть неумолимый факт и была сделана по воле Провидения. С другой стороны, всеобщая теория может позволять существование мультивселенной, эволюция которой отмечена регулярно повторяющимися «большими взрывами». Тогда лежащие в основе мультивселенной физические законы могут позволять многообразие отдельных вселенных.

Иллюстрация: Shutterstock

Планеты, звезды, галактики - человек давно вглядывается в ночное небо в поисках других миров, но теперь ставки повысились. Ученым стало тесно в родной реальности, и они ищут признаки других вселенных в реликтовом излучении - самом древнем сигнале, испущенном тысячелетия спустя Большого взрыва. Зачем это нужно и что уже получилось - в материале «Чердака».

Созвездие Большой Медведицы - семь ярких звезд, рисующих гигантский ковш, и десятки тусклых бусин, разбросанных между ними. На этом лоскуте небесной ткани в 2016 году космический телескоп «Хаббл» разглядел крошечное красноватое пятно неправильной формы - галактику GN-z11.

Эта галактика - самый удаленный от Земли астрономический объект, который фиксировали люди. Свет, пойманный «Хабблом», GN-z11 испустила 13,4 млрд лет назад, задолго до появления Солнечной системы - на заре формирования Вселенной. Так давно, что за время космического путешествия этого сигнала сама галактика из-за расширения Вселенной убежала от нас на расстояние более 30 млрд световых лет.

GN-z11 - наш форпост на границе с космической неизвестностью. Вселенная существует около 13,8 млрд лет, а свет GN-z11 родился спустя 400 миллионов лет после Большого взрыва. Если перевести всю историю Вселенной на 24 часа земных суток - это где-то в половине первого ночи. Поэтому увидеть объекты, удаленные от Земли намного дальше GN-z11, нереально - свет даже самых первых секунд их существования до нас не дошел.

Что находится за этой завесой времени, можно только гадать. Скорей всего, там тоже есть свои галактики, луны и атомы, разделенные бесконечными пустотами и закрученные теми же (или немного другими) законами физики.

Казалось бы, какой простор для фантазии. Забраться на удаленный мыс на краю света и под шум прибоя представлять себе другую Землю, населенную людьми. Они в триллионах световых лет от нас, там, посреди иного молчания Вселенной, тоже думают, что одиноки в этом мире, и еще не знают, что однажды наши одиночества встретятся. Но ученым мало таких фантазий - вместо вестей с других космических континентов нашего мира они ищут на ночном небе нечто другое. Признаки других вселенных и других миров.

Небесная гармония

Иоганн Кеплер, немецкий астроном, живший на рубеже XVI и XVII веков, был помешан на одной странной идее: он считал, что в шести планетах Солнечной системы, известных в его время, идеально воплощается гармония божественного замысла. Он обрабатывал данные наблюдений другого астронома, Тихо Браге, и старался свести траектории планет к пяти «платоновым телам» - правильным многогранникам, описанным еще древними греками.

К концу XVI века небесная головоломка сложилась. Кеплер опубликовал книгу Mysterium Cosmographicum («Тайна мироздания »), в которой орбиты шести известных тогда планет складывались в стройную геометрическую систему, напоминающую матрешку. Орбита Сатурна (самой дальней на то время планеты) была окружностью на поверхности шара, описанного вокруг куба, внутри этого куба был другой шар с орбитой Юпитера, а внутрь уже юпитерианского шара был вписан тетраэдр - и так далее с идеальным чередованием шаров, вложенных в пять разных многогранников. Полная гармония тел земных и тел небесных.

Прошло несколько лет, и космическая красота Кеплера несколько поблекла. Сначала критики подметили, что небесные сферы и многогранники вписываются друг в друга неаккуратно, а потом сам Кеплер показал, что орбиты планет представляют собой не окружности, а эллипсы, и, разочарованный своими прошлыми идеями, переключился на другую задачу: теперь он искал зашифрованную небесную гармонию в величинах этих эллипсов.

Но время расставило все по местам: ни в формах орбит, ни в их размерах не нашлось никаких зашифрованных закономерностей, скрывающих истинную природу вещей. Только хаос космической пыли, собравшейся в случайные сгустки материи. Импровизация природы с единственным правилом - не забывать про всемирное тяготение и несколько других законов, описывающих мир.

В физических уравнениях встречаются разные константы, значения которых нельзя вывести из других законов, а можно только запомнить. Скорость света, постоянная Планка, элементарный заряд - странные угловатые числа, будто свалившиеся на нас из ниоткуда. Настоящий фатум.

Многим людям это не по душе, и они пытаются найти константам объяснение. Кто-то за недостатком математического образования ищет тайные шифры природы, другие - пишут сложные уравнения теории струн и квантовой гравитации, чтобы получить значения постоянных из других законов, а третьи просто вытесняют этот вопрос куда-нибудь подальше из своего сознания, чтобы не повторить ошибку Кеплера, всю жизнь искавшего разумное объяснение случайности.

Но ничем хорошим эти стратегии пока не оборачиваются. Вывести константы ни у кого пока не получается, а молчаливо считать их значения простой случайностью несколько странно: они слишком хорошо подобраны друг под друга. Взять ту же темную энергию: будь ее чуть меньше, ничто бы не помешало гравитации схлопнуть всю материю в одну бесконечно плотную сингулярность , а чуть больше - и под воздействием темной энергии расширялись бы не только свободные от материи, пустые участки Вселенной, но и все небесные тела, атомы которых постепенно растеклись бы по всему миру.

Такая тонкая настройка фундаментальных констант ставит перед необычным выбором: наш мир и его законы становятся в первом приближении либо невероятной случайностью, либо следствием разумного замысла. Одним из способов обойти эту дилемму может быть гипотеза Мультивселенной, по которой в реальном мире существует гораздо больше, быть может даже бесконечное число разных вселенных, и в каждой из них действуют свои законы физики со своими наборами констант: где-то они совершенно не подходят для зарождения разумной жизни, а где-то как будто специально подогнаны под то, чтобы миллионы атомов материи однажды собрались в странноватый, как будто разумный агломерат и задались вопросом: «Где же тогда искать эти другие вселенные, если они так нам нужны?»

Пена вселенных

Как водится, разные ученые под словом «Мультивселенная» понимают совершенно разные вещи. Одни ищут другие вселенные на бранах - многомерных объектах из теории струн, другие верят во вселенные, рожденные с обратной стороны черных дыр. А третьи предлагают присмотреться к рождению нашей собственной Вселенной, и пока их подход гораздо продуктивнее остальных.

О рождении нашего мира пока известно мало. Где, как, кто родители - никаких документов или свидетелей, способных рассказать о том, почему появилась наша Вселенная и было ли что-нибудь до нее, у нас нет. Но зато по некоторым особенностям взрослой Вселенной ученые могут предположить, что происходило буквально в первые моменты ее жизни, восстановить первый космический вдох мира.

Это называется теорией инфляции. В 80-е года прошлого века физики построили модель, по которой уже через 10 -42 секунды после начала времени наша Вселенная начала расширяться так быстро, что за какие-то исчезающие доли секунды кусочек пространства размером с маленький, обласканный прибоем камушек растянулся до огромного видимого нам пузыря диаметром в миллиарды световых лет.

Тогда это пространство было наполнено только чистой энергией, которая непрерывно накачивалась откуда-то из неизвестного источника (ее тоже называют темной энергией, но, по-видимому, она несколько другой природы, чем современная темная), а потом энергия внезапно распалась и превратилась в кварки, фотоны, электроны и другие привычные нам частицы - это случилось через 10 -36 секунды после рождения Вселенной, а сам Большой взрыв сейчас часто называют последствием инфляции.

Странно, но эта фантастическая теория неплохо описывает некоторые особенности нашей современной Вселенной, с которыми не могли справиться предыдущие модели:

- Почему видимая нам Вселенная плоская?

Расширение шло так быстро, что радиус кривизны мира увеличился почти до бесконечности.

- Почему она однородна на больших космических масштабах?

Вселенная родилась из маленького кусочка пространства, который за мимолетное время расширения просто никак не мог потерять однородность.

- Почему во Вселенной есть только небольшие локальные флуктуации плотности?

Вселенная была настолько мала, что имела полное право называться квантовым объектом, а значит, в ней были квантовые флуктуации вакуума, подхваченные потом инфляцией и раздутые до первичных флуктуаций плотности материи, из которых за миллиарды лет последующей эволюции уже сформировались все крупные структуры.

В этой истории рождения Вселенной как всегда много фундаментальных вопросов: из-за чего началась инфляция, что ее подпитывало, почему она закончилась. Ученые ищут на них ответы, но часто вместо этого получают совершенно неожиданные результаты. Так, один из главных авторов теории инфляции советский физик Андрей Линде (сейчас он уже давно живет и работает в США) в 1983 году сформулировал теорию хаотической инфляции, в которой показал, что невероятное расширение пространства совсем не обязано заканчиваться в других частях нашего мира и уж точно вряд ли происходило только один-единственный раз.

По Линде весь мир - это Мультивселенная, огромное, безграничное пространство, заполненное загадочной энергией, которая в любой случайный момент времени может сгуститься в крошечной точке, чтобы инфляцией раздуть ее до гигантского пузыря Вселенной с начинкой из разнообразной эволюционирующей материи. Так могла родиться наша Вселенная, а параллельно где-нибудь неподалеку от нее - всего в нескольких триллионах световых лет - мог сгуститься один, второй, третий пузырь иных вселенных.

В теории инфляции гипотеза Мультивселенной выглядит уже не уловкой, единственным удобным выходом из дилеммы фатальной случайности и замысла, а получается логическим математическим путем: если человек принимает теорию инфляции, то он должен принять и другие вселенные. Не всем это нравится. Например, американский космолог Пол Стейнхардт, который участвовал в проработке некоторых деталей теории инфляции, после выхода на сцену других вселенных разочаровался в своих взглядах и теперь говорит, что Мультивселенная просто похоронила его любимую теорию.

Многие его коллеги более романтичны и для всей этой истории придумали даже красивую метафору «пены вселенных»: морской берег и волны в безвестной дали, шум прибоя, треск цикад - мы живем в маленьком пузырьке посреди огромной Мультивселенной.

Смутные воспоминания

Увидеть, услышать, почувствовать иные вселенные непросто. Другие законы физики, другие константы - быть может, даже не подозревающие об электромагнитных волнах, на которых построено наше зрение, - наконец, огромные расстояния между разными пузырями вселенных. Получить сигнал о том, что прямо сейчас происходит в параллельном мире, кажется просто нереальным, но можно поступить по-другому - заглянуть в прошлое. Как континенты, разделенные океанами, хранят следы общего прошлого в узорах береговых линий, так и данные о прошлом нашей Вселенной могут скрывать другие миры. Поэтому в поисках других вселенных ученые пристально смотрят на реликтовое излучение - первое воспоминание нашей собственной Вселенной.

Сразу после окончания инфляции Вселенная была заполнена настолько горячим и плотным веществом, что фотоны не могли пройти через него далеко и постоянно рассеивались и переизлучались. Будь в том мире разумный наблюдатель (способный жить при невероятно высоких температурах и с целым букетом других космических ограничений), он бы видел только то, что происходит в непосредственной близости от него. Но Вселенная постепенно расширялась и остывала, и спустя 300 тысяч лет после Большого взрыва Вселенная внезапно стала прозрачна для света на больших расстояниях.

Реликтовое излучение - это первые фотоны, излученные тогда в самых далеких уголках Вселенной и спустя миллиарды лет наконец дошедшие до Земли. Мы не знаем, как и где родилась наша Вселенная, но зато можем разглядывать это первое воспоминание, выходящее из-под завесы младенческого беспамятства, чтобы в нем отыскать смутные отзвуки пропавших братьев и сестер нашего мира.

Реликтовое излучение почти полностью однородно: из каждой точки удаленной Вселенной к нам приходит равномерный тепловой шум, как от тела с температурой 2,7 К. Однако в этом сигнале все-таки есть крошечные флуктуации - небольшие перепады температуры, которые считают своеобразным отпечатком самых первых квантовых флуктуаций плотности вещества, посеянных во время инфляции. В этих неоднородностях и пытаются найти свидетельства Мультивселенной.

Здесь есть две основные стратегии. Одни ученые ищут следы физического столкновения двух пузырей вселенных. Другие прибегают к более сложным логическим конструкциям. Например, американский космолог Лаура Мерсини-Хоутон (Laura Mersini-Houghton) считает, что соседние вселенные в первые моменты своего существования не только подчинялись законам квантовой механики, но и были между собой, поскольку родились в общем пространстве Мультивселенной - их характеристики зависели друг от друга.

В 2008 году Мерсини-Хоутон вместе с коллегами даже сформулировала девять признаков такой созависимости, которые можно отыскать с помощью различных физических наблюдений. Восемь из них приходятся на реликтовое излучение (например, в нем должна быть асимметрия между южной и северной полусферами неба), а девятым свидетельством Мультивселенной должен был стать провал гипотезы суперсимметрии в экспериментах на Большом адронном коллайдере.

Дальше все развивалось несколько противоречиво. В одних работах можно найти экспериментальные подтверждения каждому из девяти признаков, а в других - их опровержения. Например, гипотеза Мультивселенной по выводам Мерсини-Хоутон автоматически означает наличие так называемого темного потока - согласованного движения большой группы галактик, а мнения разных экспериментальных групп по этому вопросу сильно отличаются: одни показывают, что данные реликтового фона темный поток подтверждают , а другие - наоборот, опровергают . Так что реликтовое воспоминание пока кажется все-таки слишком размытым, чтобы делать по нему достоверные выводы о родственниках нашего мира.

Мультивселенная пока остается только симпатичной гипотезой, помогающей разобраться с некоторыми противоречиями и одновременно насладиться волнующей перспективой. Там, где-то в ласковой пене Мультивселенной, существовал или прямо сейчас существует другой пузырь разреженной материи - со своей галактикой Млечный Путь, Солнечной системой и своим Иоганном Кеплером, мечтающим о небесной гармонии. Красиво, завораживающе и в высшей степени под вопросом - как легенды об Атлантиде и других затонувших материках.

Вне зоны доступа

Самая показательная история здесь - это случай с реликтовым холодным пятном, большой областью в созвездии Эридан, температура излучения которой на 70 микрокельвинов меньше средней температуры реликтового излучения. Это совсем немного для значения в 2,7 кельвина, но почти в четыре раза больше средних флуктуаций температуры по всему реликтовому излучению, которые составляют около 18 микрокельвинов.

Холодное пятно было в списке Мерсини-Хоутон, но позже другие ученые нашли ему интерпретацию попроще. Аномалия реликтового фона объяснялась гигантским супервойдом протяженностью в 1,8 миллиарда световых лет - областью, лишенной галактик или других крупных скоплений материи, расположенной на пути света, бегущего от холодного пятна к Земле.

Однако в этом году группа астрофизиков из Даремского университета заявила , что такое рациональное объяснение нереально. Ученые собрали данные о семи тысячах галактик в окрестностях холодного пятна и показали, что характер их движения полностью исключает возможность существования гигантского супервойда. Вместо этого данные указывают, что эта область заполнена маленькими войдами, разделенными галактиками и скоплениями галактик.

Однако эта структура, в отличие от отвергнутого супервойда, объясняет холодное пятно уже с большим трудом: по подсчетам исследователей, есть всего один шанс из пятидесяти, чтобы при такой расстановке масс в реликтовом излучении могла случайно получиться такая аномалия.

И тут показательна реакция авторов исследования на необъяснимое: «Самое впечатляющее следствие нашей работы в том, что холодное пятно, возможно, вызвано столкновением нашей Вселенной с пузырем другой вселенной. Если в дальнейшем анализ реликтового излучения это подтвердит, то холодное пятно может быть принято как первое свидетельство Мультивселенной». Моментальный, кажется, почти рефлекторный ход: не видишь способа объяснить данные законами этого мира - задействуй Мультивселенную. Магнетической силы притяжения идея, почти недоступная строгой проверке.

Впрочем, все ли, что существует в реальности, должно иметь надежное воплощение в цифрах и измерениях? Если миллиарды лет спустя в нашей Вселенной вдруг станет еще немного больше темной энергии, чем сейчас, то ускоренное расширение пространства начнет растаскивать даже гравитационно связанные между собой объекты - например, соседние галактики. И в один прекрасный день за горизонт небытия уйдет последняя звезда за пределами Млечного Пути. Свет других галактик больше никогда не заблестит на ночном небосклоне. Вряд ли тогда наши отдаленные потомки поверят, что в мире существуют Большие и Малые Магеллановы облака, галактика Андромеды и тем более GN-z11 - красноватая точка на самой границе видимого сегодня мира.

Михаил Петров

«Иди же, есть и другие миры кроме этих», - писал Стивен Кинг в «Темной башне». Одной из самых интересных тем для обсуждения является то, что наша реальность - наша Вселенная, как мы ее воспринимаем - может быть не единственной версией

«Иди же, есть и другие миры кроме этих», - писал Стивен Кинг в «Темной башне». Одной из самых интересных тем для обсуждения является то, что наша реальность - наша Вселенная, как мы ее воспринимаем - может быть не единственной версией происходящего. Возможно, существуют другие Вселенные; возможно, и у них есть свои варианты, в которых происходят другие события и принимаются другие решения - своего рода мультивселенная.

Американское астрономическое сообщество регулярно обсуждает параллельные миры, фантастические или научные их аспекты и собирается ежегодно. На последнем собрании речь о параллельных мирах держал Макс Тегмарк, известный астрофизик.

Вселенная, какой ее видят самые мощные телескопы (даже в теории), огромна, велика и массивна. Вместе с фотонами и нейтрино, она содержит около 10^90 частиц, скомканных и сгруппированных вместе с сотнях миллиардов или триллионов галактик. В каждой из этих галактик триллион звезд (в среднем), и они разбросаны в космосе в сфере около 92 миллиардов световых лет в диаметре, с нашей точки зрения.

Но несмотря на то, что подсказывает нам интуиция, это все не означает, что мы находимся в центре конечной Вселенной. По сути, все доказательства указывают совсем на противоположное.

Причина того, что Вселенная кажется конечной для нас - причина того, что мы не видим дальше определенного расстояния, - не заключается в том, что Вселенная конечна, а скорее в том, что в своем нынешнем состоянии Вселенная существует определенное время. Вы должны знать, что Вселенная не постоянна во времени и пространстве, а эволюционировала от более однородной, горячей и плотной к холодной, неоднородной и размытой к нынешнему времени.


В результате этого у нас есть богатая Вселенная, изобилующая многими поколениями звезд, сверххолодным фоном остаточного излучения, удаляющимися от нас галактиками и определенными пределами, ограничивающими наше зрение. Эти пределы устанавливаются расстоянием, которое прошел свет с момента Большого Взрыва.

И это, как вы понимаете, совсем не означает, что за пределами видимой Вселенной нет ничего. У нас есть все основания полагать, как с теоретической, так и эмпирической точек зрения, что за пределами видимого есть много и даже бесконечно много невидимого.

Экспериментально мы можем измерить несколько интересных величин, включая пространственную кривизну Вселенной, ее гладкость и однородность в температурном и плотностном планах и ее эволюцию со временем.

Мы обнаружили, что Вселенная относительно плоская в пространственном отношении и относительно равномерна в своем объеме, который выходит за пределы видимого нам; возможно, наша Вселенная входит в другую Вселенную, крайне похожую на нашу, но растягивающуюся на сотни миллиардов световых лет во всех направлениях, чего мы не видим.


Однако в теории все еще интереснее. Мы можем экстраполировать Большой Взрыв назад и дойти даже не до его чрезвычайно горячего, плотного, расширяющегося состояния и даже не до бесконечно горячего и плотного состояния, а еще дальше - до самых первых моментов его существования - до фазы, которая предшествовала Большому Взрыву.

Эта фаза, период космологической инфляции, описывает фазу Вселенной, где вместо Вселенной, наполненной материей и радиацией, была Вселенная, наполненная энергией, присущей самому пространству: в состоянии, которое приводило к расширению Вселенной в геометрической прогрессии. То есть Вселенная расширялась не постепенно вместе с неторопливым течением времени, а в два, четыре, шесть, восемь раз быстрее - чем дальше от центра, тем больше прогрессия.

Поскольку это расширение происходило не только по экспоненте, но и весьма быстро, «удвоение» происходило с периодичностью в 10^-35 секунды. То есть как только проходило 10^-34 секунды, Вселенная была уже в 1000 раз больше изначального размера; еще 10^-33 секунд - Вселенная уже в 10^30 раз больше изначального размера; к тому времени, как прошло 10^-32 секунд, Вселенная была в 10^300 раз больше изначального размера и так далее. Экспонента - сильная штука не потому, что быстрая, а потому что настойчивая.

Очевидно, что Вселенная не всегда расширялась таким образом - мы здесь, инфляция завершилась, Большой Взрыв состоялся. Мы можем представить инфляцию в виде шара, скатывающегося с пологого. Пока шар находится у вершины холма, он катится, хоть и медленно, инфляция продолжается. Когда шар скатывается в долину, инфляция заканчивается, энергия пространства преобразуется в материю и излучение; инфляционное состояние перетекает в горячий Большой Взрыв.

Прежде чем мы перейдем к тому, чего мы не знаем об инфляции, стоит сказать, что мы о ней знаем. Инфляция не похожа на шар - который катится по классическому полю, - она скорее волна, распространяющаяся во времени, подобно квантовому полю.


Это означает, что чем дальше идет время, тем больше пространства создается в процессе инфляции, и в некоторых регионах, с позиции вероятности, инфляция заканчивается, тогда как в других продолжается. Регионы, в которых заканчивается инфляция, переживают Большой Взрыв и наблюдают рождение Вселенной, тогда как остальные регионы продолжают переживать инфляцию.

По мере течения времени, из-за динамики расширения, регионы, в которых инфляция завершилась, никогда не сталкиваются и не взаимодействуют; регионы же, в которых инфляция продолжается, толкают друг друга, взаимодействуют. Вот именно этого мы и ждем увидеть, основываясь на известных законах физики и наблюдаемых событий, существующих в нашей Вселенной, которые расскажут нам об инфляционных состояниях. Некоторых вещей, правда, мы не знаем, что рождает неопределенности и вероятности одновременно.

  1. Мы не знаем, как долго длилось инфляционное состояние, пока не закончилось и не перешло в Большой Взрыв. Вселенная может быть ненамного меньше наблюдаемой, может быть на много порядков больше или вообще бесконечной.
  2. Мы не знаем, будут ли регионы, в которых инфляция завершилась, одинаковыми или же серьезно отличаться от нашего. Есть допущение, что существуют (неизвестные) физические динамики, которые приводят фундаментальные константы в соответствие - массы частиц, силы фундаментальных взаимодействий, количество темной энергии, - вроде тех, что в нашем регионе. Но есть и допущение, что в разных регионах с оконченной инфляцией могут быть совершенно разные вселенные с разными типами физик и констант.
  3. И если вселенные похожи друг на друга с точки зрения физики, а число этих вселенных бесконечно, а многомировая интерпретация квантовой механики абсолютно верна, значит ли это, что существуют параллельные вселенные, в которых все развивается точно так же, как в нашей, за исключением одного-единственного крошечного квантового события?


Короче говоря, может ли существовать подобная нашей вселенная, в которой все происходило в точности так же, за исключением одной крошечной вещи, которая кардинально изменила жизнь вашего альтер эго в другой вселенной?

  • Где вы уехали работать за границу, а не остались в стране?
  • Где вы избили грабителя, а не он вас?
  • Где вы отказались от первого поцелуя?
  • Где событие, определившее жизнь или смерть, пошло иначе?

Это невероятно: возможно, существует вселенная на каждый из возможных вариантов развития событий. Есть даже ненулевая вероятность появления вселенной, в точности копирующей нашу.

Правда, есть множество оговорок, чтобы допускать такое. Во-первых, инфляционное состояние должно было продолжаться не только 13,8 миллиарда лет - как в нашей Вселенной - а в течение неограниченного количества времени. Почему?

Если Вселенная расширялась экспоненциально - не в течение кратчайшей доли секунды, а в течение 13,8 миллиарда лет (4 x 10^17 секунд), - то мы говорим о гигантском пространстве. То есть, даже если существуют регионы, в которых инфляция завершилась, большую часть Вселенной будут представлять регионы, в которых она продолжается.

Таким образом, мы будем иметь дело с по меньшей мере 10^10^50 вселенных, которые начинали с начальными условиями, подобными нашей Вселенной. Это гигантское число. И все же бывают числа и побольше. Например, если взяться описать возможные вероятности взаимодействия частиц.


В каждой вселенной 10^90 частиц, и нам нужно, чтобы у каждой из них была та же история взаимодействия на протяжении 13,8 миллиарда лет, что и у нашей вселенной, чтобы получить идентичную вселенную. Для вселенной с 10^90 частиц с 10^10^50 возможных вариантов такой вселенной нужно, чтобы каждая эта частица взаимодействовала с другой на протяжении 13,8 миллиарда лет. Число, которое вы видите выше, это просто 1000! (или (10^3)!), факториал 1000, описывающий число возможных перестановок 1000 разных частиц в любой момент времени. (10^3)! больше, чем (10^1000), что-то около 10^2477.


Но во Вселенной не 1000 частиц, а 10^90. Каждый раз, когда две частицы взаимодействуют между собой, может быть не только один результат, а целый квантовый спектр результатов. Получается, есть намного больше, чем (10^90)! возможных результатов взаимодействия частиц во Вселенной, и это число во много гуголплексов раз больше ничтожного числа вроде 10^10^50.

Другими словами, число возможных вариантов взаимодействия частиц в любой Вселенной возрастает до бесконечности намного быстрее, чем растет число возможных Вселенных вследствие инфляции.

Даже если отложить в сторону такие моменты, что может быть бесконечное число значений фундаментальных констант, частиц и взаимодействий, даже если отложить проблемы интерпретаций, мол, описывает ли многомировая интерпретация нашу физическую реальность в принципе, все сводится к тому, что число возможных вариантов развития растет так быстро - намного быстрее, чем экспоненциально, - что если только инфляция не продолжается бесконечно, параллельных вселенных, идентичных нашей, не существует.


Теорема о сингулярности говорит нам, что, скорее всего, инфляционное состояние не могло продолжаться бесконечное количество времени, а возникло как далекая, но конечная точка в прошлом. Есть множество вселенных - возможно, с другими законами, а может, и нет - но их недостаточно, чтобы дать нам альтернативную версию нас самих; число возможных вариантов растет слишком быстро по сравнению со скорость возникновения возможных вселенных.

Что это значит для нас?

Это означает, что у вас нет выбора, кроме как в этой Вселенной. Принимайте решения без сожалений: занимайтесь любимым делом, умейте постоять за себя, живите на полную катушку. Больше нет никаких вселенных с другими версиями вас и нет никакого будущего, кроме того, ради которого вы живете.


Это был спокойный день. Никто не нападал на замок, никто не угрожал внеземным существам. Паладины просто отдыхали. Пидж чинила и изучала руку Широ, Ханк с Китом что-то делали на кухне, возможно, Ханк учил Кита готовить. Коран был с мышами и они развлекались, а Аллуре было вовсе не до игр и она была в своей комнате, думая только о спасении мира и накручивая себя ещё сильнее. Что же делал Лэнс? Он тоже был в своей комнате, накручивает он себя больше всего, хоть и кажется при всех весельчаком. Он, как и Аллура, думает о спасении галактики и его народа. Но, этот простой парень скучает по своей родной планете и хочет как можно быстрее к семье, к морю, где его ждут. С ребятами весело, однозначно, но также идут войны и Лэнс боится потерять кого-то из них. И этот парень плакал, да, такой сильный и, кажется, несломленный парень плакал. Лэнса замучила жажда и сухость во рту, он из своего синего халата надел футболку и джинсы, чтобы сходить за водой. Проходя мимо комнаты Аллуры он заметил, что дверь не полностью закрыта. Он не зная почему, но решил украдкой посмотреть на спящую Аллуру, может его самого это успокоит, ведь ещё не видел её спящей. Лэнс удивился, вместо спящей Принцессы он увидел уставшую до боли обычную девушку, которая много всего перенесла, потеря родного дома и семьи. У беловолосой девушки были красные глаза, было ясно, что она плакала и плакала много, одета она была не в платье, а в свой свободный наряд, волосы полностью распущены. Лэнс знает только сильную Аллуру, которую ничто не удержит и поднимет всё самое тяжелое. Он не думая решился ворваться в комнату с криком: -А как дела у самой прекрасной Принцессы в Галактике? Аллура удивленно посмотрела на него с заплаканными глазами и быстро вытерла глаза своей рукой. -Кхм, Лэнс, а стучать никто не учил? -Охх, прости, мне так хотелось тебя увидеть, что не удержался. Аллура угрюмо посмотрела на обеспокоенного и запыхавшегося Лэнса, но через пару секунд на её лице появилась мягкая улыбка, её редко кто может рассмешить. Лэнс был так счастлив, что она улыбается. Парень решил оглядеться в комнате, было не так светло и нет окон. Небольшую комнату освещала синяя лампа, похожая на земную подсветку, было очень эстетично и красиво у неё, всё прибрано и ничто не валяется. Парень заметил, что у девушки есть большая косметичка в сумке, которая была не закрыта на молнию, алтеянка никогда не красилась, он считает её и так красавицей, но всё же решил спросить: -Аллура, слушай, почему ты никогда не красишься, раз у тебя есть косметика? -Не вижу смысла, мне её дарили друзья родителей, когда у меня были дни рождения.... Но на самом деле я не умею краситься- последнее предложение она произнесла довольно тихо, что Лэнс не услышал. -Хммм. - Лэнс задумался и решил предложить её накрасить, раньше он красил своих младших сестер, когда они играли, Аллура отказывала, парень он был настойчив и ей пришлось сдаться. Лэнс сел на её кровать в позе лотоса и доставал с её сумки подводку. Только прикоснувшись Принцесса засмеялась. -Лэнс, это щекотно! -Терпи! Мы должны тебя полностью преобразить. -Мы...? - она посмотрела ему прямо в глаза, он сказал это так, будто они вместе что-то особенное, не команда, а нечто большее, у них была небольшая пауза и оба вогнали себя в краску, не показав это друг другу, но их сердца бешено бились. Аллура мигом закрыла глаза -Х-хорошо, я постараюсь сдержаться... Парень тихо вздохнул и продолжил. Пока он красил ей глаза они вели беседу, Лэнс и Аллура рассказывали друг другу о своих планетах, Аллура об Алтеи, а Лэнс о Земле. Он пообещал, что покажет ей дождь - самое незабываемое чувство. Аллуре так нравились его рассказы, она ещё никогда подобного не видела. -Так, Аллура не открывай глаза, сейчас достану помаду. -Ладно-ладно. Лэнс не знал, какого цвета взять помаду, ей ведь всё подойдет. Он решил взять красную, он сочетается с тем, что Аллура сильная девушка. -Лэнс, всё? Парень уставился на губы Принцессы, он смотрит на её мягкие губы и хочет поцеловать её, но сдерживает себя. Он считается с чувствами других и знает, что она к нему ничего не испытывает. -Лэнс, ну хватит, мне интересно, что ты там намазюкал. - с улыбкой на лице она сказала ему. И всё же он так сильно её любит и он серьезен к своим чувствам, он действительно её любит, не только за красоту, как все думают, но и за всё. Он видит, как она старается, он замечает всё. -Прости меня, если сможешь, но я серьезен... - тихо сказал Лэнс. -За что, Лэнс? Я не пони... - не успев докончить парень взял её за щеки и поцеловал девушку. Этот поцелуй был нежный, потому что это был его первый поцелуй, как и её. Лэнс открыл глаза, захотел посмотреть на реакцию девушки, она в недоумении и в комнате тихо, что аж слышно стук двух сердец. Они сидя на кровати смотрят на друг друга, Аллура видит, что теперь у обоих красная помада на губах. Лэнс решил продолжить, целуя он прижал её к стене, прикрыв её голову своей рукой. Правой рукой прижимает её талию, левой гладит её волосы, похожие на паутину, но гладкие, как море. Аллура даже не останавливает его, она вовсе не против. Она тоже всегда наблюдала за Лэнсом, за каждым его действие и видела, что с улыбающегося лица медленно сползает улыбка и он становится грустным. Они с разных вселенных, но так похожи. Лэнс останавливается и в его рту больше нет сухости. Он так и не сходил за водой, для него глотком была Аллура и разговор с ней. Лэнс решает встать с кровати. -Извини, может мне не следовало... Он собирает уйти, но Аллура потянула его рукав на себя. -Я не против, если ты останешься...-отвернув смущенный взгляд она сказала это. Парень мягко улыбнулся, снова сел рядом с ней на кровать, захватил в свои объятия и они обнявшись лягнули спать. Так прошел день Лэнса и Аллура, а ответ к друг другу они и так знают.